Contents
Preface i
1. Introduction to C++ 1

1.1 A Review of Structures 2

12 Procedure-Oriented Programming System 7
13 Object-Oriented Programming System 9
14 Comparison of C++ withC 1/

1.5 Console Input/Output in C++ /2

1.6 Variables in C++ I8

1.7 Reference Variables in C++ 19 i
1.8 Function Prototyping 25

1.9 Function Overloading 29

1.10 Default Values for Formal Arguments of Functions 3/
1.11 Inline Functions 34

Classes and Objects 41
2.1 Introduction to Classes and Objects 42

2.2 Member Functions and Member Data 64 _

2.3 Objects and Functions 84 N

2.4 Objects and Arrays 87 '

2.5 Namespaces &8

2.6 Nested Classes 92

Dynamic Memory Management) 103
3.1 Introduction 104

3.2 Dynamic Memory Allocation /05

3.3 Dynamic Memory Deallocation 110

34 The set_new_handler() function 176

Constructors and Destructors 121
4.1 Constructors 122

4.2 Destructors 140

43 The Philosophy of OOPS 145

Vi Object-Oriented Programming with C++

5. Inheritance
5.1 Introduction to Inheritance /52
5.2 Base Class and Derived Class Pointers 57
5.3 Function Overriding 763
5.4 Base Class Initialization /66
5.5 The Protected Access Specifier 169
5.6 Deriving by Different Access Specifiers 170
5.7 Different Kinds of Inheritance 177
5.8 Order of Invocation of Constructors and Destructors 187

6. Virtual Functions and Dynamic Polymorphism
6.1 The Need for Virtual Functions 196
6.2 Virtual Functions 200
6.3 The Mechanism of Virtual Functions 205
6.4 Pure Virtual Functions 207
6.5 Virtual Destructors and Virtual Constructors 213

7. Stream Handling
7.1 Streams 222
7.2 The Class Hierarchy for Handling Streams 222
7.3 Text and Binary Input/Output 224
7.4 Text Versus Binary Files 227
7.5 Text Input/Output 228
7.6 Binary Input/Output 238
7.7 Opening and Closing Files 248
7.8 Files as Objects of the fstream Class 250
7.9 File Pointers 250
7.10 Random Access to Files 253
7.11 Object Input/Output Through Member Functions 254
7.12 Error Handling 255
7.13 Manipulators 257

8. Operator Overloading, Type Conversion, New Style Casts, and RTTI
8.1 Operator Overloading 268
8.2 Overloading the Various Operators 280
8.3 Type Conversion 338 ~
8.4 New Style Casts and the typeid Operator 343

9. Templates
9.1 Introduction 364
9.2 Function Templates 365
9.3 Class Templates 370
9.4 The Standard Template Library (STL) 377

151

195

221

267

363

‘ﬁ? Contents vii

10. Exception Handling 393
10.1 Introduction 394
10.2 C-Style Handling of Error-generating Code 394
10.3 C++-Style Solution—the try/throw/catch Construct 399
10.4 Limitation of Exception Handling 415

Appendix A—Case Study 419
A.1 A Word Query System 4179

Appendix B—Comparison of C++ with C 429
Appendix C-—Comparison of C++ with Java 431

C.1 Similarities between C++ and Java 431
C.2 Differences between C++ and Java 433

Appendix D—Object-Oriented Analysis and Design 445
D.1 Introduction 445

D.2 The Object-Oriented Model 446

D.3 Analysis 455

D.4 System Design 456

D.5 Object Design 457

D.6 Implementation 458

Appendix E—Glossary 459
Appendix F—Self Tests ' 465
Test 1 465
Test2 468
Test3 471
References 475

Index 477

Introduction to C++

OVERVIEW

This chapter introduces the reader to the fundamentals of object-oriented
programming systems (OOPS).

The chapter begins with an overview of structures, the reasons for their inclusion
as a language construct in C language, and their role in procedure-oriented
programming systems. Use of structures for creating new data types is described.

Also, the drawbacks of structures and the development of OOPS are elucidated.

The middle section of the chapter explains OOPS, supplemented with suitable
examples and analogies to help in understanding this tricky subject.

The concluding section of the chapter includes a study of a number of new features
that are implemented by C++ compilers but do not fall under the category of
object-oriented features. (Language constructs of C++ that implement object-
oriented features are dealt with in the next chapter.)

2 Object-Oriented Programming with C++

1.1 A Review of Structures =

In order to understand procedure-oriented programming systems, let us first recapitulate
our understanding of structures in C. Let us review their necessity and use in creating
new data types.

The Need for Structures

There are cases where the value of one variable depends upon that of another variable.

Take the example of date. A date can be programmatically represented in C by three
different integer variables taken together. Say,

int d,m,y; //three integers for representing dates

Here *d’, ‘m’, and ‘y’ represent the day of the month, the month, and the year, respectively.
Observe carefully. Although these three variables are not grouped together in the code,
they actually belong to the same group. The value of one variable may influence the
value of the other two. In order to understand this clearly, consider a function ‘next_day()’
that accepts the addresses of the three integers that represent a date and changes their
values to represent the next day. The prototype of this function will be

void next_day(int *,int *,int *); //function to calculate
//the next day

602; //1st January, 2002
Now, if we write
next_day (&d, &m, &y) ;
‘d” will become 2, ‘m’ will remain 1, and ‘y’ will remain 2002.

But if

d=28;

m=2;

y=1999; //28th February, 1999
and we call the function as

next_day (&d, &m, &y) ;

‘d’ will become 1, ‘m’ will become 3, and ‘y’ will remain 1999.

Introduction to C++ 3
Again, if
d=31;

m=12;
y=1999; //31st December, 1999

and we call the function as
next day(&d, &m, &y) ;

‘d’> will become 1, ‘m’ will become 1, and ‘y’ will become 2000.

As you cansee, ‘d’, ‘m’, and ‘y’ actually belong to the same group. A change in the value
of one may change the value of the other two. But there is no language construct that
actually places them in the same group. Thus, members of the wrong group may be
accidentally sent to the function (Listing 1.1)!

di=28; ml=2; y1=1999; //28th February, 1999

d2=19; m2=3; y2=1999; //19th March, 1999

next_day (&d1, &ml, &y1) ; //OK

next_day (&d1, &m2, &y2) ; //What? Incorrect set passed!

Listing 1.1 Problem in passing groups of programmatically independent but Iogically‘
dependent variables

As can be observed in Listing 1.1, there is nothing in the language itself that prevents the
wrong set of variables from being sent to the function. Moreover, integer type variables
that are not meant to represent dates might also be sent to the function!

Let us try arrays to solve the problem. Suppose the ‘next_day()’ function accepts an
array as a parameter. Its prototype will be
void next day (int *);

Let us declare date as an array of three integers.

int date([3];

date[0]=28;

date[1]=2;

date[2]1=1999; //28th February, 1999

4 Object-Oriented Programming with C++
Now, let us call the function as follows
next_day (date) ;

The values of ‘date[0]’, ‘date[1]’, and ‘date[2]” will be correctly set to 1, 3, and 1999,
respectively. Although this method seems to work, it certainly appears unconvincing.
After all any integer array can be passed to the function, even if it does not necessarily
represent a date. There is no data type of date itself. Moreover, this solution of arrays
will not work if the variables are not of the same type. The solution to this problem is to
create a data type called date itself using structures.

struct date //a structure to represent dates

{

int d, m, y;
}i

Now the ‘next_day()’ function will accept the address of a variable of the structure date
as a parameter. Accordingly, its prototype will be as follows

void next_day (struct date *);

Let us now call it as shown in Listing 1.2

struct date di;
dl.d=28;
dl.m=2;
dl.y=1999;

next day(&dl) ;

Listing 1.2 The need for structures

‘d1.d’, ‘dl.m’, and ‘dl.y’ will be correctly set to 1, 3, and 1999, respectively. Since the
function takes the address of an entire structure variable as a parameter at a time, there is
no chance of variables of the different groups being sent to the function.

“'Structure is a programming construct in C that allows us to put together variables that
should be together. "

Library programmers use structures to create new data types ‘Application programs and
other library programs use these new data types by declaring variables of this data type.

struct date di;

Introduction to C++ 5
. They call the associated functions by passing these variables or their addresses to them.

dl.d=31;
dl.m=12;
dl.y=2003;
next_day (&d1) ;

Finally, they use the resultant value of the passed variable further as per requirements.
printf (“The next day is: %d/%d/%d\n”, di1.d4, di.m, dl.y); \

Output
The next day is: 01/01/2004

Creating a New Data Type Using Structures
Creation of a new data type using structures is loosely a three-step process that is executed
by the library programmer.

Step 1: Put the structure definition and the prototypes of the associated functions in a
header file.

/*Beginning of date.h*/
/*This file contains the structure definition and
prototypes of its associated functions*/

~struct date

{
int d,m,y;
}i
void next_day(struct date *); //get the next date
void get sys date(struct date *); //get the current
//system date
/*

Prototypes of other useful and relevant functions to
work upon variables of the date structure

*/

/*End of date.hx/

Listing 1.3 Header file containing definition of a structure variable and prototypes of its
associated functions

6 Object-Oriented Programming with C++

Step 2: Put the definition of the associated functions in a source code and create a library.

/*Beginning of date.c*/

/*This file contains the definitions of the associated
functions*/

#include“date.h”

void next day (struct date * p)

{

//calculate the date that immediately follows the one
//represented by *p and set it to *p.

}

void get_sys_date(struct date * p)

{

}

/*
Definitions of other useful and relevant functions to
work upon variables of the date structure

*/

/*End of date.c*/

//determine the current system date and set it to *p

Listing 1.4 Defining the associated functions of a structure

Step 3: Provide the header file and the library, in whatever media, to other programmers
who want to use this new data type.

Creation of a structure and creation of its associated functions are two separate steps that
together constitute one complete process.

Using Structures in Application Programs

'The steps to use this new data type are as follows:

Step 1: Include the header file provided by the library programmer in the source code.

/*Beginning of dateUser.c*/
#include“date.h”
void main()

{

}

/*End of dateUser.c*/

Introduction to C++ 7

Step 2: Declare variables of the new data type in the source code.

/*Beginning of dateUser.c*/
#include“date.h”
void main ()

{

struct date 4d;

}

/*End of dateUser.c*/

Step 3: Embed calls to the associated functions by passing these variables in the source
code.

/*Beginning of dateUser.c*/
#include“date.h”
void main()

{
struct date 4;
d.d=28;
d.m=2;
d.y=1999;
next day (&d) ;

}

/*End of dateUser.c*/

Listing 1.5 Using a structure in an application program

Step 4: Compile the source code to get the object file.

Step 5: Link the object file with the library provided by the library programmer to get the
executable or another library.

1.2 Procedure-Oriented Programming System s s

In light of the previous discussion, let us understand the procedure-oriented programming
system.(The foregoing pattern of programming divides the code into functions. Data
(contained in structure variables) is passed from one function to another to be read from
or written into. The focus is on procedures. This programming pattern is, therefore, a
feature of the procedure-oriented programming system.)

8 Object-Oriented Programming with C++

In the procedure-oriented programming system, procedures are dissociated from data
and are not a part of it. Instead, they receive structure variables or their addresses and
work upon them. The code design is centered around procedures. While this may sound
obvious, this programming pattern has its drawbacks.

/The drawback with this programming pattern is that the data is not secure. It can be
manipulated by any procedure. Associated functions that were designed by the library
programmer do not have the exclusive rights to work upon the data. They are not a part
of the structure definition itself. Let us see why this is a problem.

Suppose the library programmer has defined a structure and its associated functions as
described above. Further, in order to perfect his/her creation, he/she has ri gorously tested
the associated functions by calling them from small test applications. Despite his/her
best efforts, he/she cannot be sure that an application that uses the structure will be bug
free. The application program might modify the structure variables, not by the associated
function he/she has created, but by some code inadvertently written in the application
program itself. Compilers that implement the procedure-oriented programming system
do not prevent unauthorized functions from accessing/manipulating structure variables.

Now let us look at the situation from the application programmer’s point of view. Consider
an application of around 25,000 lines (quite common in the real programming world), in
which variables of this structure have been used quite extensively. During testing, it is
found that the date being represented by one of these variables has become 29t February
1999! The faulty piece of code that is causing this bug can be anywhere in the program.
Therefore, debugging will involve a visual inspection of the entire code (of 25000 lines!)
and will not be limited to the associated functions only.

The situation becomes especially grave if the execution of the code that is likely to
corrupt the data is conditional. For example,

if (<some conditions)
d.m++; //d is a variable of date structure.. d.m may
//become 13!

The condition under which the bug-infested code executes may not arise during testing.
While distributing his/her application, the application programmer cannot be sure that it
would run successfully. Moreover, every new piece of code that accesses structure
variables will have to be visually inspected and tested again to ensure that it does not
corrupt the members of the structure. After all, compilers that implement procedure-
oriented programming systems do not prevent unauthorized functions from accessing/
manipulating structure variables.

Introduction to C++ 9

Let us think of a compiler that enables the library programmer to assign exclusive rights
to the associated functions for accessing the data members of the corresponding structure.
If this happens, then our problem is solved. If a function which is not one of the intended
associated functions accesses the data members of a structure variable, a compile-time
error will result. To ensure a successful compile of his/her application code, the application
programmer will be forced to remove those statements that access data members of
structure variables. Thus, the application that arises out of a successful compile will be
the outcome of a piece of code that is free of any unauthorized access to the data members
of the structure variables used therein. Consequently, if a run-time error arises, attention
can be focussed on the associated library functions.

It is the lack of data security of procedure-oriented programming systems that led to the
object-oriented programming system (OOPS). This new system of programming is the
subject of our next discussion. ;

1.3 Object-Oriented Programming System s

In OOPS, we try to model real-world objects. But, what are real-world objects? Most
real-world objects have internal parts and interfaces that enable us to operate them. These
interfaces perfectly manipulate the internal parts of the objects. They also have the
exclusive rights to do so.

Let us understand this concept with the help of an example. Take the case of a simple
LCD projector (a real-world object). It has a fan and a lamp. There are two switches—
one to operate the fan and the other to operate the lamp. However, the operation of these
switches is necessarily governed by rules. If the lamp is switched on, the fan should
automatically switch itself on. Otherwise, the LCD projector will get damaged. For the
same reason, the lamp should automatically get switched off if the fan is switched off. In
order to cater to these conditions, the switches are suitably linked with each other. The
interface to the LCD projector is perfect. Further, this interface has the exclusive rights
to operate the lamp and fan.

This, in fact, is a common characteristic of all real-world objects. If a perfect interface is
required to work on an object, it will also have exclusive rights to do so.

Coming back to C++ programming, we notice a resemblance between the observed
behavior of the LCD projector and the desired behavior of date structure’s variables. In
OOPS, with the help of a new programming construct and new keywords, associated
functions of the date structure can be given exclusive rights to work upon its variables. In
other words, all other pieces of code can be prevented from accessing the data members
of the variables of this structure.

Compilers that implement OOPS enable data security by diligently enforcing this
prohibition. They do this by throwing compile-time errors against pieces of code that

10 Object-Oriented Programming with C++

violate the prohibition. This prohibition, if enforced, will make structure variables behave
like real-world objects. Associated functions that are defined to perfectly manipulate
structure variables can be given exclusive rights to do so.

There is still another characteristic of real-world objects—a guaranteed initialization of
data. After all, when you connect the LCD projector to the mains, it does not start up in
an invalid state (fan off and lamp on). By default, either both the lamp and the fan are off
or both are on. Users of the LCD projector need not do this explicitly. The same
characteristic is found in all real-world objects.

Programming languages that implement OOPS enable library programmers to incorporate
this characteristic of real-world objects into structure variables. Library programmers
can ensure a guaranteed initialization of data members of structure variables to the desired
values. For this, application programmers do not need to write code explicitly.

Two more features are incidental to OOPS. They are:
e Inheritance

e Polymorphism

" Inheritance allows one structure to inherit the characteristics of an existing structure.

As we know from our knowledge of structures, a variable of the new structure will contain
data members mentioned in the new structure’s definition. However, because of
inheritance, it will also contain data members mentioned in the existing structure’s
definition from which the new structure has inherited.

Further, associated functions of the new structure can work upon a variable of the new
structure. For this, the address/name of a variable of the new structure is passed to the
associated functions of the new structure. Again, as a result of inheritance, associated
functions of the existing structure from which the new structure has inherited will also
be able to work upon a variable of the new structure. For this, the address/name of a
variable of the new structure is passed to the associated functions of the existing structure.

In inheritance, data and interface may both be inherited. This is expected as data and
interface complement each other. The parent structure can be given the general common
characteristics while its child structures can be given the more specific characteristics.
This allows code reusability by keeping the common code in a common place—the base
structure. Otherwise, the code would have to be replicated in all of the child structures,
which will lead to maintenance nightmares. Inheritance also enables code extensibility
by allowing the creation of new structures that are better suited to our requirements as
compared to the existing structures.

Polymorphism, as the name suggests, is the phenomena by virtue of which the same
entity can exist in two or more forms. In OOPS, functions can be made to exhibit

1.4 Comparison of C++ with C wormamemmrsmmn s ami e Sennins

/

Introduction to C++ 11

polymorphic behavior. Functions with different set of formal arguments can have the
same name. Polymorphism is of two types: static and dynamia We will understand how
this feature enables C++ programmers to reuse and extend existing code in the subsequent
chapters.\

C++is an extension of C language. It is a proper superset of C language. This means that

' a C++ compiler can compile programs written in C language. However, the reverse is not

true; A C++ compiler can understand all the keywords that a C compiler can understand.
Again, the reverse is not true.. Decision-making constructs, looping constructs, structures,
functions, etc. are written in exactly the same way in C++ as they are in C language.
Apart from the keywords that implement these common programming constructs, C++
provides a number of additional keywords and language constructs that enable it to
implement the object-oriented paradigm.

The following header file shows how the structure Date, which has been our running
example so far, can be rewritten in C++.

/*Beginning of Date.h*/
class Date //class instead of structure
{
private:
int d,m,y;
public:
Date () ;
void get sys date(); //associated functions appear
//within the class definition
void next_day () ;
}i

/*End of Date.h*/

Listing 1.6 Redefining the Date structure in C++

The following differences can be noticed between Date structure in C (Listing 1.3) and
C++ (Listing 1.6):

‘o The keyword class has been used instead of struct.
e Two new keywords—private and public-—appear in the code.

e Apart from data members, the class constructor also has member functions.

12 Object-Oriented Programming with C++

e A function that has the same name as the class itself is also present in the class.
Incidentally, it has no return type specified. This is the class constructor and is
discussed in Chapter 4 of this book.

The next chapter contains an in-depth study of the above class construct. It explains the
meaning and implications of this new feature. It also explains how this and many more
new features implement the features of OOPS, such as data hiding, data encapsulation,
data abstraction, and a guaranteed initialization of data. However, before proceeding to
Chapter 2, let us digress slightly and study the following:

e Console input/output in C++

e Some non-object-oriented features provided exclusively in C++ (reference
variables, function overloading, default arguments, inline functions)

Remember that C++ program files have the extension ‘.cpp’ or *.C’. The former extension
is normally used for Windows or DOS-based compilers while the latter is normally used
for UNIX-based compilers. The compiler’s manual can be consulted to find out the exact
extension.

1.5 Console Input/Output in C++ s«

Console Output

The output functions in C language, such as ‘printf()’, can be included in C++ programs
because they are anyway defined in the standard library. However, there are some more
ways of outputting to the console in C++. Let us consider an example.

/*Beginning of cout.cpp*/
#include<iostream.h>
void main()

{
int x;
x=10; -
cout<<x; //outputting to the console
}
/*End of cout.cpp*/
Output
10

Listing 1.7 Outputting in C++

Introduction to C++ 13

The third statement in the ‘main()’ function (Listing 1.7) needs to be understood.

‘cout’ (pronounce see-out) is actually an object of the class ‘ostream_withassign’ (you
can think of it as a variable of the structure ‘ostream_withassign’). It stands as an alias
for the console output device, that is, the monitor (hence the name).

- The << symbol, originally the left shift operator, has had its definition extended in C++.
In the given context, it operates as the ‘insertion’ operatot: It is a binary operator. It takes
two operands. The operand on its left must be some object of the ‘ostream’ class. The
operand on its right must be a value of some fundamental data typé The value on the
right side of the ‘insertion operator’ is ‘inserted’ (hence the name) into the stream headed
towards the device associated with the object on the left. Consequently, the value of ‘x’
is displayed on the monitor.

The file ‘iostream.h’ needs to be included in the source code to ensure successful
compilation because the object ‘cout’ and the ‘insertion’ operator have been declared in
that file. °

Another object ‘end]’ allows us to insert a new line into the output stream> The following
example illustrates this.

/*Beginning of endl.cpp*/
#include<iostream.h>
void main ()

{

int x,y;

x=10;
y=20;

cout<<x;
cout<<endl; //inserting a new line by endl
cout<<y;

}

/*End of endl.cpp*/

Output
10
20

Listing 1.8 Inserting a new line by ‘end!’

14 Object-Oriented Programming with C++

One striking feature of the ‘insertion’ operator is that it works equally well with values
of all fundamental types as its right-hand operand. It does not need the format specifiers
that are needed in the “printf()’ family of functions. The following listing exemplifies this.

/*Beginning of cout.cpp*/
#include<iostream.h>
void main()
{

int ivar;

char cVar;

float fVar;

double dvar;

char * cPtr;

ivar=10;

cVar='"x’;

fVvar=2.3;
dvar=3.14159;
cPtr="Hello World”;

cout<<iVar;
cout<<endl;
cout<<cVar;
cout<<endl;
cout<<fVar;
cout<<endl;
cout<<dvar;
cout<<endl;
cout<<cPtr;
cout<<endl;

}

/*End of cout.cpp*/

Output

10

X

2.3

3.14159
Hello World

Listing 1.9 Outputting data with the ‘insertion’ operator

Just like the arithmetic addition operator, it is possible to cascade the ‘insertion’ operator.
The following example (Listing 1.10) is a case in point.

Introduction to C++ 15

/*Beginning of coutCascade.cpp*/
#include<iostream.h>
void main ()

{
int x;
float y;

cout<<x<<endl<«<y; //cascading the insertion operator
}

/*End of coutCascade.cpp*/

Output
10
22

Listing 1.10 Cascading the ‘insertion’ operator

It is neediess to sagthat(we can pass constants instead of variables as operands to the
‘insertion’ operator,

/*Beginning of coutMixed.cpp*/
#include<iostream.h>
void main{)

{

cout<<lO<<endl<<“Hello World\n”<<3.4;

}

/*End of coutMixed.cpp*/

Output

10

Hello World
34

Listing 1.11 Outputting constants using the ‘insertion’ operator

In Listing 1.11, note the use of the new line character in the string that is passed as one of
the operands to the ‘insertion’ operator.

16 Object-Oriented Programming with C++

It was mentioned in the beginning of this section that ‘cout’ is an object that is associated
with the console. Hence, if it is the left-hand side operand of the ‘insertion’ operator, the
value on the right is displayed on the monitor. You will learn in the chapter on stream
handling that it is possible to pass objects of some other classes that are similarly associated
with disk files as the left-hand side operand to the ‘insertion operator’. In such cases, the
values on the right get stored in the associated files.

Console Input

The input functions in C language, such as ‘scanf()’, can be included in C++ programs
because they are anyway defined in the standard library. However, we do have some
more ways of inputting from the console in C++. Let us consider an example.

/*Beginning of cin.cpp*/
#include<iostream.h>
void main ()

‘ {
int x;
cout<<“Enter a number: ”;

cins>>x; //console input in C++
cout<<“You entered: ”"<<X;

}

/*End of cin.cpp*/

Output
Enter a number: 10<enter>
You entered: 10

Listing 1.12 Inputting in C++

The third statement in the ‘main()’ function (Listing 1.12) needs to be understood.

‘cin’ (pronounce see-in) is actually an object of the class ‘istream_withassign’ (you can
think of it as a variable of the structure ‘istream_withassign’). It stands as an alias for the
console input device, that is, the keyboard (hence the name).

'The >> symbol, originally the right-shift operator\) has had its definition extended in
C++. In the given context, it operates as the ‘extraction’ operator. Ttisa binary operator and
takes two operands. The operand on its left must be some object of the ‘istream_withassign’
class. The operand on its right must be a variable of some fundamental data type. The
value for the variable on the right side of the ‘extraction’ operator is extracted (hence the
name) from the stream originating from the device associated with the object on the left.
Consequently, the value of ‘x’ is obtained from the keyboard.

Introduction to C++ 17

The file ‘iostream.h’ needs to be included in the source code to ensure successful
compilation because the object ‘cin’ and the “extraction” operator have been declared in
that file.

Again, just like the ‘insertion’ operator, the ‘extraction’ operator works equally well
with variables of all fundamental types as its right-hand operand. It does not need the
format specifiers that are needed in the ‘scanf()’ family of functions. The following
listing exemplifies this.

/*Beginning of cin.cpp*/
#include<iostream.h>
void main()
{

int ivar;

char cVar;

float fVar;

"

cout<<“Enter a whole number: ;

cin>>iVar;

cout<<"“Enter a character: ”;

cin>>cVar;

cout<<“Enter a real number: ”;

cin>>fvar;

cout<<"You entered: “<<iVar<<"“ ”<<cVar<<" "<<fVar;

}

/*End of cin.cpp*/

Output

Enter a whole number: 10<enter>
Enter a character: x<enter>

Enter a real number: 2.3 <enter>
You entered: 10 x 2.3

Listing 1.13 Inputting data with the extraction operator

Just like the ‘insertion’ operator. it is possible to cascade the *extraction” operator. Listing
1.14 is a case in point.

/*Beginning of cinCascade.cpp*/
#include<iostream.h>
void main ()

{

18 Object-Oriented Programming with C++

int x,y;
cout<<“Enter two numbers\n”;
cin>>x>>y; //cascading the extraction operator

cout<<"You entered "<<x<<"“ and "<<y;

}

/*End of cinCascade.cpp*/

Output

Enter two numbers
10<enter>

20<enter>

You entered 10 and 20

Listing 1.14 Cascading the ‘extraction’ operator

It was mentioned in the beginning of this section that cin is an object that is associated
with the console. Hence, if it is the left-hand side operand of the “extraction’ operator,
the variable on the right gets its value from the keyboard. You will learn in the chapter on
stream handling that it is possible to pass objects of some other classes that are similarly
associated with disk files as the left-hand side operand to the “extraction operator. In
such cases, the variable on the right gets its value from the associated files.

1.6 Variables in C++

Variables in C++ can be declared anywhere inside a function and not necessarily at its
very beginning. For example,

#include<iostream.h>
void main{)
{
int x;
x=10;
cout<<“Value of x= "<<x<<endl;

int * iPtr; //declaring a variable in the middle of a

//function
iPtr=&x;
cout<<“Address of x= "<<iPtr<<endl;
1
Output

Value of x= 10
Address of x=0x21878163

Listing 1.15 Declaring variables in C++

Introduction to C++ 19

1.7 Reference Variables in C++

First, let us understand the basics. How does the operating system (OS) display the value
of variables? How are assignment operations such as ‘x=y’ executed during run time? A
detailed answer to these questions is beyond the scope of this book. A brief study is,
nevertheless, possible and necessary for a good understanding of reference variables.
What follows is a simplified and tailored explanation.

The OS maintains the addresses of cach variable as it allocates memory for them during
run time. In order to access the value of a variable, the OS first finds the address of the
variable and then transfers control to the byte whose address matches that of the variable.

Suppose the following statement is executed (X" and v are integer type variables).
X=y;

The steps followed are:
1. The OS first finds the address of "y".
2. The OS transfers control to the byte whose address matches this address.

3. The OS reads the value from the block of four bytes that starts with this byte
(most C++ compilers cause integer type variables to occupy four bytes during run
time and we will accept this value for our purpose).

The OS pushes the read value into a temporary stack.
The OS finds the address of *x’.

The OS transfers control to the byte whose address matches this address.

Nk

The OS copies the value from the stack. where it had put it earlier, into the block of
four bytes that starts with the byte whose address it has found above (address of
‘x’).

Notice that addresses of the variables on the left as well as on the right of the ‘assignment’
operator are determined. However, the value of the right-hand operand is also determined.
The expression on the right must be capable of being evaluated to a value. This is an
important point and must be borne in mind. It will enable us to understand a number of
concepts later. Especially, you must remember that the expression on the left of the
‘assignment’ operator must be capable of being evaluated to a valid address at which
data can be written.

20 Object-Oriented Programming with C++

Now, let us study reference variables. 4 reference variable is nothing but a reference for
an existing variable. 1t shares the memory location with an existing variable. The syntax
for declaring a reference varnable is as follows: '

<data-type> & <ref-var-names>=<existing-var-name:;

For example. if *x" is an existing integer type variable and we want to declare ‘iRef” as a
reference to it, the statement is as follows:

int & iRef=x;

"iRef is a reference to *x) This means that although *iRef" and "x” have separate entries
in the OS, their addresses are actually the same!

Thus, a change in the value of ‘x" will naturally reflect in ‘iRef” and vice versa. The
following program (Listing 1.16) illustrates this.

/*Beginning of reference0Ol.cpp*/
#include<iostream.h>
void main ()
{
int %;
X'_—‘lO_,‘
cout<<x<<endl;
int & iRef?x{ //iRef is a reference to x
iRef=20; //same as x=10;
cout<é¥<<end1;
X+-+; //same as iRef++;
cout<<iRef<<endl;

}

/*End of referenceOl.cpp*/

Output .
10

20,

21

Listing 1.16 Reference variables

Reference variables must be initialized at the time of declaration (otherwise the compiler
will not know what address it has to record for the reference variable).

Introduction to C++ 21

Reference variables are variables in their own right. They just happen to have the address
of another variable. After their creation, they function just like any other variable.

We have just seen what happens when a value is written into a reference variable. The
value of a reference variable can be read in the same way as the value of an ordinary
variable is read. The following program (Listing 1.17) illustrates this:

/*Beginning of reference02.cpp*/
#include<iostream.h> lJ’
void main()

{

int X,vy;

x=10;

int & iRef=x;

y=1iRef; //same as y=X;
cdut<<¥<<endl;

Y4+ ' //x and iRef unchanged
cout<i?;<end1<<i3%f<<end1<<7<<end1;

}

/*End of reference02.cpp*/

Output
10
10
10
11

Listing 1.17 Reading the value of a reference variable

A reference variable can be a function argument and thus change the value of the parameter
that is passed to it in the function call. An illustrative example follows.

/*Beginning of reference03.cpp*/
#include<iostream.h>
void increment (int &) ; //formal argument is a reference
//to the passed parameter
void main()
{
int x;
x=10;
increment (x) ;
cout<<x<<endl;

22 Object-Oriented Programming with C++

void increment (int & r)

{

I+4+;
I
/*End of reference03.cpp*/

//same as x++;

Output
11

Listing 1.18 Passing by reference

Functions can return by reference also.

/*Beginning of reference04.cpp*/
#include<iostream.h>
int & larger(comst int &, const int &) ;
void main ()
{
int x,y;
X=10;
y:ZO,‘
int & r=larger(x,y) ;
r=-1; ’)
Cout<<x<<endl<<y<<endl;

}

int & larger(const int & a, const int & b)

{

if (a>b) //return a reference to the larger parameter
return a;
else
return b;
}

/*End of reference04.cpp*/

Output
10
-1

Listing 1.19 Returning by reference

In the foregoing listing, ‘a” and ‘x’ refer to the same memory location while *b* and ‘y’
refer to the same memory location. From the ‘larger()" function, a reference to ‘b’, that
is, reference to *y’ is returned and stored in a reference variable ‘r’. The ‘larger()’ function

introduction to C++ 23

does not return the value ‘b’ because the return type is int& and not int. Thus, the
address of ‘r” becomes equal to the address of *y’. Consequently, any change in the value
of ‘r” also changes the value of y’. The foregoing program in Listing 1.19 can be shortened
as follows. '

/*Beginning of reference05.cpp*/
#include<iostream.h>
int & larger (const int &, const int &);
void main{()
{

int x,y;

x=10;

y=20;

larger(x,y)=-1;
cout<<x<<endl<<y<<endl;

}

int & larger(const int & a, const int & b)

if (a>b)
return a;
else
return b;
}

/*End of referencel5.cpp*/

Output
10
-1

Listing 1.20 Returning by reference

The name of a non-constant variable can be placed on the left of the ‘assignment’ operator
because a valid address—the address of the variable—can be determined from it. A call
to a function that returns by reference can be placed on the left of the ‘assignment’
operator for the same reason.

If the compiler finds the name of a non-constant variable on the left of the ‘assignment’
operator in the source code, it writes instructions in the executable to

e determine the address of the variable,
e transfer control to the byte that has that address. and

o write the value on the right of the ‘assignment’ operator into the block that begins
with the byte found above.

24 Object-Oriented Programming with C++

A function that returns by reference primarily returns the address of the returned variable.
If the call is found on the left of the assignment operator, the compiler writes necessary
instructions in the executable to

e transfer control to the byte whose address is returned by the function and
e write the value on the right of the assignment operator into the block that begins

with the byte found above.

The name of a variable can be placed on the right of the “assignment’ operator. A call to
a function that returns by reference can be placed on the right of the ‘assignment’ operator
for the same reason.

If the compiler finds the name of a variable on the right of the ‘assignment” operator in
the source code, it writes instructions in the executable to

e determine the address of the variable,
e transfer control to the byte that has that address,
e read the value from the block that begins with the byte found above, and
® push the read value into the stack.
A function that returns by reference primarily returns the address of the returned variable.

Ifthe call is found on the right of the ‘assignment” operator, the compiler writes necessary
instructions in the executable to

o transfer control to the byte whose address is returned by the function,
e read the value from the block that begins with the byte found above, and

e push the read value into the stack.

A constant cannot be placed on the left of the *assignment’ operator. This is because
constants do not have a valid address. Moreover, how can a constant be changed? Functions
that return by value, return the value of the returned variable, which is a constant.
Therefore, a call to a function that returns by value cannot be placed on the left of the
‘assignment’ operator.

You may notice that the formal arguments of the ‘larger()’ function in the foregoing
listing have been declared as constant references because they are not supposed to change
the values of the passed parameters even accidentally.

Introduction to C++ 25

We must avoid returning a reference to a local variable. For example,

/*Beginning of reference06.cpp*/
#include<iostream.h>

int & abc{();

void main ()

{
}

int & abc ()

{

abc{)=-1;

int x;
return X; //returning reference of a local variable

}

/*End of reference06.cpp*/

Listing 1.21 Returning the reference of a local variable

The problem with the above program is that when the ‘abc()’ function terminates, ‘x’
will go out of scope. Consequently, the statement

abc()=-1;

in the ‘main()’ function will write ‘~1” in an unallocated block of memory. This can lead
to run-time errors.

1.8 Function Prototyping -

SE st e

{/Function prototyping is necessary in C++. A prototype describes the function’s interface
to the compiler. It tells the compiler the return type of the function as well as the number,
type, and sequence of its formal arguments.

The general syntax of function prototype is as follows:

return_type function_name(argument_list);
For example,
int add(int, int);

This prototype indicates that the ‘add()’ function returns a value of integer type and
takes two parameters both of integer type.

Since a function prototype is also a statement, a semicolon must follow it.

26 Object-Oriented Programming with C++

Providing names to the formal arguments in function prototypes is optional. Even if such
names are provided. they need not match those provided in the function definition. For
example,

/*Beginning of funcProto.cpp*/
#include<iostream.h>
int add(int, int); //function prototype
void main ()
{
int x,vy,z;
cout<<“Enter a number: ”;
cin>>x;
cout<<“Enter another number: “;
cins>>y;
z=add (x,y) ; //function call
cout<<z<<endl;

}

int add(int a,int b) //function definition

{

return (a+b);

}

/*End of “funcProto.cpp*/

Output

Enter a number: 10<enter>

Enter another number: 20<enter>
30

Listing 1.22 Function prototyping

Why is prototyping important? By making prototyping necessary, the compiler ensures
the following:

e The return value of a function is handled correctly.

e Correct number and type of arguments are passed to a function.

Let us discus these points.

Consider the following statement in Listing 1.22:

int add(int, int);

The prototype tells the compiler that the *add()’ function returns an integer type value.
Thus, the compiler knows how many bytes have to be retrieved from the place where the

Introduction to C++ 27

‘add()’ function | ceted to_write its return value and how these bytes are to be

In the absence of prototypes, the compiler will have to assume the type of the returned
value. Suppose, it assumes that the type of the returned value is an integer. However, the
called function may return a value of an incompatible type (say a structure type). Now
suppose an integer type variable is equated to the call to a function where the function
call precedes the function definition. In this situation, the compiler will report an error
against the function definition and not the function call. This is because the function call
abided by its assumption, but the definition did not. However, if the function definition is
in a different file to be compiled separately, then no compile-time errors will arise. Instead,
wrong results will arise during run time as the following program shows.

/*Beginning of def.c*/
/*function definition*/

struct abc . g) -,
{ RN SV RN oy B °

s~

char a;
int b;
float c;

}i

struct abc test ()

{

struct c al;
al.a="x";
al.b=10;
al.c=1.1;
return al;
! -
/*End of def.c*/

/*Beginning of driver.cx*/
void main()
{ i
int x;
x=tes%(); //no compile time error!!

prin “&d”,x) ;
/*End of driver.c*/

Output
1688

-

Listing 1.23 Absence of function prototype produces weird results

28 Object-Oriented Programming with C++

A compiler that does not enforce prototyping will definitely compile the above program.
But then it will have no way of knowing what type of value the ‘test()" function returns.
Therefore, erroneous results will be obtained during run time as the output of Listing
1.23 clearly shows.

Since the C++ compiler necessitates function prototyping, it will report an error against
the function call because no prototype has been provided to resolve the function call.
Again, if the correct prototype is provided, the compiler will still report an error since
this time the function call does not match the prototype. The compiler will not be able to
convert a ‘struct abc’ to an integer. Thus, function prototyping guarantees protection

from errors arising out of incorrect function calls.

What happens if the function prototype and the function call do not match? Such a situation
cannot arise. The function prototype and the function definition are both created by the
same person, that is, the library programmer. The library programmer puts the function’s
prototype in a header file. He/she provides the function’s definition in a library. The
application programmer includes the header file in his/her application program file in
which the function is called. He/she creates an object file from this application program
file and links this object file to the library to get an executable file.

The function’s prototype also tells the compiler that the “add()” function accepts two
parameters. If the program fails to provide such parameters, the prototype enables the
compiler to detect the error. A compiler that does not enforce function prototyping will
compile a function call in which an incorrect number and/or type of parameters have
been passed. Run-time errors will arise as in the foregoing case.

Finally, function prototvping produces automatic type conversion wherever appropriaic.
We take the case of compilers that do not enforce prototyping. Suppose, a function expects
an integer type value (assuming integers occupy four bytes) but a value of double type
(assumfng doubles occupy éight bytes) is wrongly passed. During run time, the value in
only the first four bytes of the passed eight bytes will be extracted. This is obviously
undesirable. However, the C++ compiler automatically converts the double type value
into an integer type. This is because it inevitably encounters the function prototype before
encountering the function call and therefore knows that the function expects an integer
type value. However, it must be remembered that such automatic type conversions due to
function prototypes occur only when it makes sense. For example, the compiler will
prevent an attempted conversion from a structure type to integer type.

Nevertheless, can the same benefits not be realized without prototyping? Is it not possible
for the compiler to simply scan the rest of the source code and find out how the function
has been defined? There are two reasons why this solution is inappropriate. They are:

e It is inefficient. The compiler will have to suspend the compilation of the line
containing the function call and search the rest of the file.

Introduction to C++ 29

o Most of the times the function definition is not contained in the file where it is
called. It is usually contained in a library.

Such compile-time checking for prototypes is known as static type checking.

1.9 Function Overloading

(C++ allows two or more functions to have the same name. For this, however, they must
have different signatures)Signature of a function means the number; type, and sequence
of formal arguments of the function>In order to distinguish amongst the functions with
the same name, the compiler expects their signatures to be different.d)epending upon the
type of parameters that are passed to the function call, the compiler decides which of the
available definitions will be invoked. For this, function prototypes should be provided to
the compiler for matching the function calis. Accordingly, the linker, during link time,
links the function call with the correct function definition.

Listing 1.24 clarifies this.

/*Beginning of funcOverload.cpp*/
#include<iostream.h>

int add(int, int); //first prototype
int add(int,int,int); //second prototype

void main{()

{

int x,y;
x=add (10,20) ; //matches first prototype
y=add(30,40,50) ; //matches second prototype

cout<<x<<endl<<y<<endl;

}

int add(int a,int b)

{

return(a+b) ;

}

int add(int a,int b,int c)

{

return (a+b+c) ;

}

/*End of funcOverload.cpp*/
Output

30

120

Listing 1.24 Function overloading

30 Object-Oriented Programming with C++

Just like ordinary functions, the definitions of overloaded functions are also put in libraries.
Moreover, the function prototypes are placed in header files.

The two function prototypes at the beginning of the program tell the compiler the two
different ways in which the ‘add()’ function can be called. When the compiler encounters
the two distinct calls to the “add()’ function, it already has the prototypes to satisfy them
both. Thus, the compilation phase is completed successfully. During linking, the linker
finds the two necessary definitions of the ‘add()’ function and, hence, links successfully
to create the executable file. ’

The compiler decides which function is to be called based upon the number, type, and
sequence of parameters that are passed to the function call. When the compiler encounters
the first function call,

x=add(10,20) ;

it decides that the function that takes two integers as formal arguments is to be executed.
Accordingly, the linker then searches for the definition of the ‘add()’ function where
there are two integers as formal arguments.

Similarly, the second call to the *add()’ function
y=add (30,40, 50) ;

is also handled by the compiler and the linker.

Note the importance of function prototyping. Since function prototyping is mandatory in
C++, it1s possible for the compiler to support function overloading properly. The compliier
is able to not only restrict the number of ways in which a function can be called but also
support more than one way in which a function can be called. Function overloading is
possible because of the necessity to prototype functions.

By itself, function overloading is of little use. Instead of giving exactly the same name
for functions that perform similar tasks, it is always possible for us to give them similar
names. However, function overloading enables the C++ compiler to support another
feature, that is, function overriding (which in turn is not really a very useful thing by
itself but forms the basis for dynamic polymorphism—one of the most striking features
of C++ that promotes code reuse).

Function overloading is also known as function polymorphism because, just like
polymorphism in the real world where an entity exists in more than one form, the same
function name carries different meanings.

Function polymorphism is static in nature because the function definition to be executed
is selected by the compiler during compile time itself. Thus, an overloaded function is
said to exhibit static polymorphism.

Introduction to C++ 31
1.10 Default Values for Formal Arguments of Functions «.ccoms s

Itis possible to specify default values for some or all of the formal arguments of a function.
If no value is passed for an argument when the function is called, the default value
specified for it is passed. If parameters are passed in the normal fashion for such an
argument, the default value is ignored. An illustrative example follows.

/*Beginning of defaultArg.cpp*/
#include<iostream.h>
int add(int, int, int ¢=0);//third argument has default value

void main ()

{

int x,y;
x=add (10, 20,30) ; //default value ignored
y=add (40,50) ; //default value taken for the

//third parameter
Cout<<x<<endl<<y<<endl;

}

int add(int a,int b, int c)

{
}

/*End of defaultArg.cpp*/

return (a+b+c);

Output
60
90

Listing 1.25 Default values for function arguments

In the above listing, a default value— zero—has been specified for the third argument of
the ‘add()’ function. In the absence of a value being passed to it, the compiler assigns the
default value. If a value is passed to it, the compiler assigns the passed value. In the first
call

Xx=add(10,20,30);

the values of ‘a’, ‘b’, and ‘¢’ are 10, 20, and 30, respectively. But, in the second function
call

y=add (40,50) ;

32 Object-Oriented Programming with C++
the values of ‘a’, ‘b’, and ‘c’ are 10, 20, and 0, respectively. The default value—zero—
for the third parameter ‘c’ is taken. This explains the output of the above listing.

" Default values can be assigned to more than one argument. The following program
illustrates this.

/*Beginning of multDefaultArg.cpp*/

#include<iostream.h>

int add(int, int b=0,int c=0); //second and third argument
//have default values

void main ()

{

int x,v.2;

x=add (10,20,30) ; //all default values ignored

y=add (40,50} ; //default value taken for the
//third argument

z=add (60) ; //default value taken for
//the second and the third
//arguments

cout<<x<<endlc<<y<<endl<<z<<endl;

}

int add(int a,int b,int <)

{

return (a+b+c);

}

/*End of multDefaultArg.cpp*/
Output
60

90
60

Listing 1.26 Default viaues for more than one argument

There is no need to provide names to the arguments taking default values in the function
{ prototypes.

int add(int, int=0,int=0);
can be written instead of
int add(int,int b=0,int c=0);

Default values must be supplied starting from the rightmost argument. Before supplying
default value to an argument, all arguments to its right must be given default values.
Suppose you write

Introduction to C++ 33

int add(int, int=0,int);

you are attempting to give a default value to the second argument from the right without
specifying a default value for the argument on its right. The compiler will report an error
that the default value is missing (for the third argument).

Default values must be specified in function prototypes alone. They should not be specified
in the function definitions. -

While compiling a function call, the compiler will definitely have its prototype. Its
definition will probably be located after the function call. It might be in the same file, or
it will be in a different file or library. Thus, to ensure a successful compilation of the
function calls where values for arguments having default values have not been passed,
the compiler must be aware of those default values. Hence, default values must be specified
in the function prototype.

You must also remember that the function prototypes are placed in header files. These
are included in both the library files that contain the function’s definition as well as the
client program files that contain calls to the functions. While compiling the library file
that contains the function definition, the compiler will obviously read the function
prototype before it reads the function definition. Suppose the function definition also
contains default values for the arguments. Even if the same default values are supplied
for the same arguments, the compiler will think that you are trying to supply two different
default values for the same argument. This is obviously unacceptable because the default
value can be only one in number. Thus, default values must be specified in the function
prototypes and should not be specified again in the function definitions.

If default values are specified for the arguments of a function, the function behaves like
an overloaded function and, therefore, should be overloaded with care; otherwise
ambiguity errors might be caused. For example, if you prototype a function as follows:

int add(int, int, int=0);
int add(int, int) ;

This can confuse the compiler. If only two integers are passed as parameters to the function
call, both these prototypes will match. The compiler will not be able to decide with
which definition the function call has to be resolved. This will lead to an ambiguity error.

Default values can be given to arguments of any data type as follows:

double hra(double,double=0.3) ;
void print (char='a‘');

34 Object-Oriented Programming with C++

1.11 Inline Functions

Inline functions are used to increase the speed of execution of the executable files. C+~
inserts calls to the normal functions and the inline functions in different ways in an
executable.

The executable program that is created after compiling the various source codes and
linking them consists of a set of machine language instructions. When a program is
started, the operating system loads these instructions into the computer’s memory. Thus,
each instruction has a particular memory address. The computer then goes through these
instructions one by one. If there are any instructions to branch out or loop, the control
skips over instructions and jumps backward or forward as needed. When a program
reaches the function call instruction, it stores the memory address of the instruction
immediately following the function call. It then jumps to the beginning of the function.
whose address it finds in the function call instruction itself, executes the function code,
and jumps back to the instruction whose address it had saved earlier.

Obviously, an overhead is involved in
e making the control jump back and forth and

e storing the address of the instruction to which the control should jump after the
function terminates.

The C++ inline function provides a solution to this problem. An inline function is u
Junction whose compiled code is ‘in line’ with the rest of the program. That is, the compiler
replaces the function call with the corresponding function code. With inline code, the
program does not have to jump to another location to execute the code and then jump
back. Inline functions, thus, run a little faster than regular functions.

However, there is a trade-off between memory and speed. If an inline function is called
repeatedly, then multiple copies of the function definition appear in the code
(see Diagrams 1.1 and 1.2). Thus, the executable program itself becomes so large that it
occupies a lot of space in the computer’s memory during run time. Consequently, the
program runs slow instead of running fast. Thus, inline functions must be chosen with
care.

g/ For specifying an inline function, you must:
e prefix the definition of the function with the inline keyword and
e define the function before all functions that call it, that is, define it in the header

file itself.

The following listing illustrates the inline technique with the inline ‘cube()’ function
that cubes its argument. Note that the entire definition is in one line. That is not a necessary

introduction to C++ 35

void main ()

I3

1

| double x;
—+— x=cube (2); &t———

g:cube (4); G——]

x=cube (10) ; 4¢—————|

L__p| double cube (double n)
{

return n*n*n;

The control is transferred to the function
definition in case of a non-inline function

Diagram 1.1 Transfer of control in a non-inline function

condition. But if the definition of a function does not fit in one line, the function is
probably a poor candidate for an inline function!

/*Beginning of inline.cpp*/
#include<iostream.h>

inline double cube (double x) { return Xx*x*x; }

void main ()

{
double a,b;
double c=13.0; droeso
a=cube (5.0) ;
b=cube(4.5+7.5);
cout<<a<<endl;
cout<<b<<endl;
cout<<cube (c++) <<endl;
cout<<ce<<endl;

/*End of inline.cpp*/

36 Object-Oriented Programming with C++

void main ()

{

double x;

{
double n;
n=2;
x=n*n*n;

double nj;
n=4;
x=n*n*n;

doubla n;
n=10;
xX=n*n*n;

The control is not transferred to the
function definition in case of a inline
function since the call is replaced by the
definition itself

Diagram 1.2 Control does not get transferred in an inline function

Output
125
1728
2197
14

Listing 1.27 Inline functions

However, under some circumstances, the compiler, despite your indications, may not
expand the function inline. Instead, it will issue a warning that the function could not be
expanded inline and then compile all calls to such functions in the ordinary fashion.
Those conditions are:

Introduction to C++ 37

o The function is recursive.
o There are looping constructs in the function.

o There are static variables in the function.

Let us briefly compare macros in C and inline function in C++. Macros are a poor
predecessor to inline functions. For example, a macro for cubing a number is as follows:

#define CUBE (X) X*X*X

Here, a mere text substitution takes place with X’ being replaced by the macro parameter.

a=CUBE(5.0) ; //replaced by a=5.0*5.0*5.0;

b=CUBE(4.5+7.5) ; //replaced by
//b=4.5+7.5%4 . 5+47.5%4 .5+7.5;

c=CUBE (x++) ; //replaced by C=X++*X++*X++;

Only the first statement works properly. An intelligent use of parentheses improves matters
slightly.

#define CUBE(X) ((X)*(X)* (X))

Even now, ‘CUBE(c++)’ undesirably increments ‘c’ thrice. But the inline ‘cube()’ function
evaluates ‘c’, passes the value to be cubed, and then correctly increments ‘c’ once.

It is advisable to use inline functions instead of macros.

Variables sometimes influence each other’s values. A change in the value of one may necessitate a
corresponding adjustment in the value of another. It is, therefore, necessary to pass these variables
together in a single group to functions. Structures enable us to do this.

Structures are used to create new data types. This is a two-step process.
Step 1: Create the structure itself.

Step 2: Create associated functions that work upon variables of the structure.

While structures do fulfil the important need described above, they nevertheless have limitations.
They do not enable the library programmer to make variables of the structure that he/she has designed
to be safe from unintentional modification by functions other than those defined by him/her. Moreover,
they do not guarantee a proper initialization of data members of structure variables.

Both of the above drawbacks are in direct contradiction with the characteristics possessed by real-
world objects. A real-world object has not only a perfect interface to manipulate its internal parts

38 Object-Oriented Programming with C++

but also exclustve rights to do so. Consequently, a real-world object never reaches an invalid state
during its lifetime. When we start operating a real-world object, it automatically assumes a valid
state. In object-oriented programming systems (OOPS), we can incorporate these features of real-
world objects into structure variables.

Inheritance allows a structure to inherit both data as well as functions of an existing structure.
Polymorphism allows different functions to have the same name. It is of two types: static and dynamic.

Console output is achieved in C++ with the help of insertion operator and the cout object. Console
input is achieved in C++ with the help of extraction operator and the cin object.

In C++, variables can be defined anywhere in a function. A reference variable shares the same
memory location as the one of which it is a reference. Therefore, any change in its value automatically
changes the value of the variable with which it is sharing memory. Calls to functions that return by
reference can be placed on the left of the assignment operator.

Function prototyping is necessary in C++. Functions can be overloaded. Functions with different
signatures can have the same name. A function argument can be given a default value so that if no
value is passed for it in the function call, the default value is assigned to it. If a function is declared
inline, its definition replaces its call, thus, speeding up the execution of the resultant executable.

creating new data types using structures

lack of data security in structures
no guaranteed initialization of data in structures
procedure-oriented programming system
object-oriented programming system
data security in classes
guaranteed initialization of data in classes
inheritance
polymorphism
console input/output in C++

- cout

- ostream_withassign class

- insertion operator

Introduction to C++ 39

cin

istream_withassign class
extraction operator
iostream.h header file

endl

reference variable

passing by reference

returning by reference

importance of function prototyping

function overloading

default values for function arguments

inline functions

x N N e

10.

. Which programming needs do structures fulfill? Why does C language enable us to create

structures?

What are the limitations of structures?

. What is the procedure-oriented programming system?

What is the object-oriented programming system?

Which class is ‘cout’ an object of?

Which class is ‘cin’ an object of?

What benefits does a programmer get if the compiler forces him/her to protot e a function?

Why will an ambiguity error arise if a default value is given to an argument of an overloaded
function?

Why should default values be given to function arguments in the function’s prototype and not
in the function’s definition?

State true or false.

(a) Structures enable a programmer to secure the data contained in structure variables from
being changed by unauthorized functions.

(b) The ‘insertion operator’ is used for outputting in C++.

40 Object-Oriented Programming with C++

.

12.

13.

(c) The ‘extraction operator’ is used for outputting in C++.

(d) A callto a function that returns by reference cannot be placed on the left of the assignment
operator.

(e) An inline function cannot have a looping construct.

Think of some examples from your own experience in C programming where you felt the need
for structures. Do you see an opportunity for programming in OOPS in those examples?

Structures in C do not enable the library programmers to guarantee an initialization of data.
Appreciate the implications of this limitation by taking the date structure as an example.

Calls to functions that return by reference can be put on the left-hand side of the assignment
operator. Experiment and find out whether such calls can be chained. Consider the following:

t(a, b) = g(c, d) = x;

where ‘f” and ‘g’ are functions that return by reference while ‘a’, ‘b’, ‘¢’, ‘d’, and ‘x" are
variables.

Classes and Objects

OVERVIEW

The previous chapter refreshed the reader’s knowledge of the structure construct
provided by C language—its use and usage. It also dealt with a critical analysis
of structures along with their pitfalls and limitations. The reader was made aware
of a strong need for data security and for a guaranteed initialization of data that
structures do not provide.

This chapter is a logical continuation to the previous one. It begins with a thorough
explanation of the class construct of C++ and the ways by which it fulfils the
above-mentioned needs. Superiority of the class construct of C++ over the
structure construct of C language is emphasized in this chapter.

This chapter also deals with how classes enable the library programmer to provide
exclusive rights to the associated functions.

A description of various types and features of member functions and member
data finds a prominent place in this chapter. This description covers:

« Overloaded member functions

« Default values for the arguments of member functions

« Inline member functions

« Constant member functions

o Mutable data members

« Friend functions and friend classes

» Static members

A section in this chapter is devoted to namespaces. They enable the C++
programmer to prevent pollution of the global namespace that leads to name
clashes.

Example code to tackle arrays of objects and arrays inside objects form the
penultimate portion of this chapter.

The chapter ends with an essay on nested classes—their need and use.

42 Object-Oriented Programming with C++
2.1 Introduction to Classes and Objects

Classes are to C++ what structures are to C. Both provide the library programmer a
means to create new data types.

Let us briefly recapitulate the issues faced while programming in C described in the
previous chapter. In C, the library programmer creates structures. He/she also provides a
set of tested bug-free functions that correctly manipulate the data members of structure
variables.

The ‘Date’ structure and its accompanying functions may be perfect. However, there is
absolutely no guarantee that the client programs will use only these functions to manipulate
~ the members of variables of the structure.

struct date di;

setDate(&dl); //assign system date to dl.
printf (“%d”,dl.month) ;

dl.month = 13;//undesirable but unpreventable!!

Listing 2.1 Undesirable manipulation of structures not prevented in C

The bug arising out of the last line of the ‘main()’ function above is easily detected even
by a visual inspection. Nevertheless, the same will certainly not be the case if the code is
around 25,000 lines long. Lines similar to last line of the ‘main()’ function above may be
scattered all over the code. Thus, they will be difficult to hunt down.

Notice that the absence of a facility to bind the data and the code that can have the
exclusive rights to manipulate the data can lead to difficult-to-detect run-time bugs. C
does not provide the library programmer with the facilities to encapsulate data, to hide
data, and to abstract data.

The C++ compiler provides a solution to this problem. Structures (the st ruct keyword)
have been redefined to allow member functions also. The following listing illustrates
this.

/*Beginning of structDistancell.cpp*/
#include<iostream.h>

struct Distance

{
int iFeet;
float flInches;

Classes and Objects 43

void setFeet (int x)

{
}

int getFeet ()

{

iFeet=x;

return iFeet;

} e ey g
void setInches (float y) ¢ = L Y
{ T
fInches=y; < C . L
} e
float getInches() ot)f
{ .
return fInches; / .
} —
bi S

void main()

{ .
Distance dl,d2; ’

' dl.setFeet (2);

dl.setInches(2.2); -
d2.setFeet (3); S ,
d2.setInches(3.3);
cout<<dl.getFeet () <<" "<<dl.getInches()<<endl;
cout<<d2.getFeet () <<" ”"<<d2.getInches()<<endl;

}

/*End of structDistance0Ol.cpp*/ ;o

Output
222
333

Listing 2.2 C++ allows member functions in structures

First, we must notice that functions have also been defined within the scope of the structure
definition. This means that not only the member data of the structure can be accessed
through the variables of the structures but also the member functions can be invoked.
The struct keyword has actually been redefined in C++. This latter point is illustrated
by the ‘main()’ function in Listing 2.2 above. We must make careful note of the way
variables of the structure have been declared and how the member functions have been
invoked.

Member functions are invoked in much the same way as member data are accessed, that
is, by using the variable-to-member access operator. In a member function, one can refer
directly to members of the object for which the member function is invoked. For example,

44 Object-Oriented Programming with C++

as a result of the second line of the ‘main()’ function in Listing 2.2, it is ‘d1.iFeet’ that
gets the value of 2. On the other hand, it is ‘d2.iFeet’ that gets the value 3 when the fourth
line is invoked. This is explained in the section on the ‘this’ pointer that follows shortly.

Each structure variable contains a separate copy of the member data within itself. However.
only one copy of the member function exists. Again, the section on the ‘this’ pointer
explains this.

However, in the above example, please note that the member data of structure variables

can still be accessed directly. The following line of code illustrates this.

dl.iFeet=2; //legal!!

Private and Public Members

What is the advantage of having member functions also in structures? We have put together
the data and functions that work upon the data but we have not been able to give exclusive
rights to these functions to work upon the data. Problems in code debugging can still
arise as before. Specifying member functions as public but member data as private obtains
the advantage. The syntax for this is illustrated by the following program (Listing 2.3).

Consider Listing 2.3.

/*Beginning of structDistance02.cpp*/
#include<iostream.h>
struct Distance
{
private:
int iFeet;
float fInches;

public:
void setFeet (int x)
{
iFeet=x; //LEGAL: private member accessed by

//member function

}

int getFeet ()

{

return iFeet;

}

void setInches (float y)

{

fInches=y;

}

float getInches()

Classes and Objects 45

{

return flnches; T
- Padial
}; PR I¢ -
I

void main()
{
Distance di,d2;
dl.setFeet (2);
dl.setInches(2.2);
d2.setFeet (3);
d2.setInches (3.3);
dl.iFeet++; //ERROR!!: private member accessed by
//non-member function
cout<<dl.getFeet ()<<"™ ”"<<dl.getInches()<<endl;
cout<<d2.getFeet ()<<“ "<<d2.getInches()<<endl;

}

/*End of structDistance02.cpp*/

Listing 2.3 Making members of structures private

First, let us have a close look at the modified definition of the structure ‘Distance’. Two
new keywords, private and public have been introduced in the definition of the
structure. Their presence in the foregoing example tells the compiler that ‘iFeet’ and
‘fInches’ are private data members of variables of the structure ‘Distance’ and the member
functions are public. Thus, values of ‘iFeet’ and ‘fInches’ of each variable of the structure
‘Distance’ can be accessed/modified only through member functions of the structure and
not by any non-member function in the program (again note that it is the ‘iFeet’ and
‘finches’ of the invoking object that are accessed/modified by the member functions).
Any attempt to violate this restriction is prevented by the compiler because that is how
the C++ compiler recognizes the private keyword. Since the member functions are
public, they can be invoked from any part of the program.\‘

As we can observe from Listing 2.3, the compiler refuses to compile the line in which a
private member of a structure variable is accessed from a non-member function (the
‘main()’ function in Listing 2.3).

>/ The keywords private and public are also known as ‘access modifiers’ or ‘access
specifiers’ because they control the access to the members of structures.

C++ introduces a new keyword class as a substitute for the keyword struct. In a
structure, members are public by default. Thus, the definition

46 Object-Oriented Programming with C++

struct Distance
{
private:
int iFeet;
float finches;
public:
void setFeet (int x)

{
}

int getFeet ()

{

return iFeet;
}
void setInches(float y)

{

}
float getInches()

{

return fInches;

}

iFeet=x;

fInches=y;

}i
can also be written as

struct Distance

{

void setFeet (int x) //public by default
{
iFeet=x;
}
int getFeet () //public by default

{

return iFeet;

}

void setInches (float y) //public by default

{

fInches=y;

}

float getInches() //public by default

{

return flInches;
private:
int iFeet;
float flInches;

}i

Listing 2.4 Structure members are public by default

